Раздел ii.физика ультразвука. Скорость ультразвука в воде (приложение д) Ультразвука с помощью которого определяется

001. Процесс, на котором основано применение ультразвукового метода исследования - это: а) Визуализация органов и тканей на экране прибора; б) Взаимодействие ультразвука с тканями тела человека; в) Прием отраженных сигналов; г) Распространение ультразвуковых волн; д) Серошкальное представление изображения на экране прибора. 002. Ультразвук - это звук, частота которого не ниже: а) 15 кГц; б) 20000 Гц; в) 1 МГц; г) 30 Гц; д) 20 Гц. 003. Акустической переменной является: а) Частота; б) Давление; в) Скорость; г) Период; д) Длина волны. 004. Скорость распространения ультразвука возрастает, если: а) Плотность среды возрастает; б) Плотность среды уменьшается; в) Упругость возрастает; г) Плотность, упругость возрастает; д) Плотность уменьшается, упругость возрастает. 005. Усредненная скорость распространения ультразвука в мягких тканях составляет: а) 1450 м/с; б) 1620 м/с; в) 1540 м/с; г) 1300 м/с; д) 1420 м/с. 006. Скорость распространения ультразвука определяется: а) Частотой; б) Амплитудой; в) Длиной волны; г) Периодом; д) Средой. 007. Длина волны ультразвука с частотой 1 МГц в мягких тканях составляет: а) 3.08 мм; б) 1.54 мкм; в) 1.54 мм; г) 0.77 мм; д) 0.77 мкм. 008. Длина волны в мягких тканях с увеличением частоты: а) Уменьшается; б) Остается неизменной; в) Увеличивается. 009. Наибольшая скорость распространения ультразвука наблюдается в: а) Воздухе; б) Водороде; в) Воде; г) Железе; д) Вакууме. 010. Скорость распространения ультразвука в твердых телах выше, чем в жидкостях, т.к. они имеют большую: а) Плотность; б) Упругость; в) Вязкость; г) Акустическое сопротивление; д) Электрическое сопротивление. 011. Звук - это: а) Поперечная волна; б) Электромагнитная волна; в) Частица; г) Фотон; д) Продольная механическая волна. 012. Имея значение скоростей распространения ультразвука и частоты, можно рассчитать: а) Амплитуду; б) Период; в) Длину волны; г) Амплитуду и период; д) Период и длину волны. 013. Затухание ультразвукового сигнала включает в себя: а) Рассеивание; б) Отражение; в) Поглощение; г) Рассеивание и поглощение; д) Рассеивание, отражение, поглощение. 014. В мягких тканях коэффициент затухания для частоты 5 МГц составляет: а) 1 Дб/см; б) 2 Дб/см; в) 3 Дб/см; г) 4 Дб/см; д) 5 Дб/см. 015. С увеличением частоты коэффициент затухания в мягких тканях: а) уменьшается; б) остается неизменным; в) увеличивается. 016. Свойства среды, через которую проходит ультразвук, определяет: а) сопротивление; б) интенсивность; в) амплитуда; г) частота; д) период. 017. К допплерографии с использованием постоянной волны относится: а) продолжительность импульса; б) частота повторения импульсов; в) частота; г) длина волны; д) частота и длина волны. 018. В формуле, описывающей параметры волны, отсутствует: а) частота; б) период; в) амплитуда; г) длина волны; д) скорость распространения. 019. Ультразвук отражается от границы сред, имеющих различия в: а) плотности; б) акустическом сопротивлении; в) скорости распространения ультразвука; г) упругости; д) разницы плотностей и разницы акустических сопротивлений. 020. При перпендикулярном падении ультразвукового луча интенсивность отражения зависит от: а) разницы плотностей; б) разницы акустических сопротивлений; в) суммы акустических сопротивлений; г) и разницы, и суммы акустических сопротивлений; д) разницы плотностей и разницы акустических сопротивлений. 021. При возрастании частоты обратное рассеивание: а) увеличивается; б) уменьшается; в) не изменяется; г) преломляется; д) исчезает. 022. Для того, чтобы рассчитать расстояние до отражателя, нужно знать: а) затухание, скорость, плотность; б) затухание, сопротивление; в) затухание, поглощение; г) время возвращения сигнала, скорость; д) плотность, скорость. 023. Ультразвук может быть сфокусирован с помощью: а) искривленного элемента; б) искривленного отражателя; в) линзой; г) фазированной антенной; д) всего перечисленного. 024. Осевая разрешающая способность определяется: а) фокусировкой; б) расстоянием до объекта; в) типом датчика; г) числом колебаний в импульсе; д) средой, в которой распространяется ультразвук. 025. Поперечная разрешающая способность определяется: а) фокусировкой; б) расстоянием до объекта; в) типом датчика; г) числом колебаний в импульсе; д) средой. 026. Проведение ультразвука от датчика в ткани тела человека улучшает: а) эффект Допплера; б) материал, гасящий ультразвуковые колебания; в) преломление; г) более высокая частота ультразвука; д) соединительная среда. 027. Осевая разрешающая способность может быть улучшена, главным образом, за счет: а) улучшения гашения колебания пьезоэлемента; б) увеличения диаметра пьезоэлемента; в) уменьшения частоты; г) уменьшения диаметра пьезоэлемента; д) использования эффекта Допплера. 028. Если бы отсутствовало поглощение ультразвука тканями тела человека, то не было бы необходимости использовать в приборе: а) компрессию; б) демодуляцию; в) компенсацию. 029. Дистальное псевдоусиление эха вызывается: а) сильно отражающей структурой; б) сильно поглощающей структурой; в) слабо поглощающей структурой; г) ошибкой в определении скорости; д) преломлением. 030. Максимальное Допплеровское смещение наблюдается при значении Допплеровского угла, равного: а) 90 градусов; б) 45 градусов; в) 0 градусов; г) -45 градусов; д) -90 градусов. 031. Частота Допплеровского смещения не зависит от: а) амплитуды; б) скорости кровотока; в) частоты датчика; г) Допплеровского угла; д) скорости распространения ультразвука. 032. Искажения спектра при Допплерографии не наблюдается, если Допплеров ское смещение ______ частоты повторения импульсов: а) меньше; б) равно; в) больше; г) верно все вышеперечисленное; д) верно а) и б) 033. Импульсы, состоящие из 2-3 циклов используются для: а) импульсного Допплера; б) непрерывно-волнового Допплера; в) получения черно-белого изображения; г) цветного Допплера; д) верно все вышеперечисленное. 034. Мощность отраженного Допплеровского сигнала пропорциональна: а) объемному кровотоку; б) скорости кровотока; в) Допплеровскому углу; г) плотности клеточных элементов; д) верно все вышеперечисленное. 035. Биологическое действие ультразвука: а) не наблюдается б) не наблюдается при использовании диагностических приборов в) не подтверждено при пиковых мощностях, усредненных во времени ниже 100 мВт/кв. см г) верно б) и в) 036. Контроль компенсации (gain): а) компенсирует нестабильность работы прибора в момент разогрева; б) компенсирует затухание; в) уменьшает время обследования больного; г) все перечисленное неверно. 001 - б 002 - б 003 - б 004 - д 005 - в 006 - д 007 - в 008 - а 009 - г 010 - б 011 - д 012 - д 013 - д 014 - д 015 - в 016 - а 017 - д 018 - в 019 - б 020 - б 021 - а 022 - г 023 - д 024 - г 025 - а 026 - д 027 - а 028 - в 029 - в 030 - в 031 - а 032 - д 033 - в 034 - г 035 - в 036 - б

Дмитрий Левкин

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

, (3)

Для поперечных волн она определяется по формуле

Дисперсия звука - зависимость фазовой скорости монохроматической звуковых волн от их частоты . Дисперсия скорости звука может быть обусловлена как физическим свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны .

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны .

Волна Лэмба - упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

, (5)

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова - вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения , понимая под этим удельную мощность излучателя , т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Интенсивность звука измеряется в системе единиц СИ в Вт/м 2 . В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик - от пороговых значений ~ 10 -12 Вт/м 2 до сотен кВт/м 2 в фокусе ультразвуковых концентраторов.

Таблица 1 - Свойства некоторых распространенных материалов

Материал Плотность, кг/м 3 Скорость продольной волны, м/c Скорость поперечной волны, м/c , 10 3 кг/(м 2 *с)
Акрил 1180 2670 - 3,15
Воздух 0,1 330 - 0,00033
Алюминий 2700 6320 3130 17,064
Латунь 8100 4430 2120 35,883
Медь 8900 4700 2260 41,830
Стекло 3600 4260 2560 15,336
Никель 8800 5630 2960 49,544
Полиамид (нейлон) 1100 2620 1080 2,882
Сталь (низколегированный сплав) 7850 5940 3250 46,629
Титан 4540 6230 3180 26,284
Вольфрам 19100 5460 2620 104,286
Вода (293К) 1000 1480 - 1,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т.е. . Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r 2 , амплитуда волны убывает пропорционально , а для цилиндрической волны - пропорционально .

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле

, (6)

Коэффициент затухания от времени определяется

, (7)

Для измерения коэффициента также используют единицу дБ/м, в этом случае

, (8)

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике .

, (9)

  • где A 1 – амплитуда первого сигнала,
  • A 2 – амплитуда второго сигнала

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

Коэффициенты отражения и прохождения будут определяться следующим образом

, (12)

, (13)

  • где D – коэффициент прохождения звукового давления

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z 1 >Z 2 , то при отражении фаза волны изменяется на 180˚ .

Коэффициент пропускания энергии из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

, (14)

Интерференция и дифракция ультразвуковых волн

Интерференция звука - неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции - сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука - отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука - расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны , степень отклонений от геометрической картины зависит от значения волнового параметра

, (15)

  • где D - поперечник объекта (например, поперечник ультразвукового излучателя или препятствия),
  • r - расстояние точки наблюдения от этого объекта

Излучатели ультразвука

Излучатели ультразвука - устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию энергию какого-либо другого вида.

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи . В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях , магнитострикционных преобразователях , электродинамических излучателях , электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса : они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости .

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр , излучаемая мощность звука , направленность излучения . В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса , границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f 0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Чувствительность излучателя ультразвука - отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью , т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м 2 .

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия , представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля .

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

, (17)

Однако поскольку D обычно значительно больше , уравнение можно упростить и привести к виду

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. связано с получением информации посредством ультразвуковых волн, - с активным воздействием на вещество и - с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.

Раздел физики ультразвука довольно полно освещен в ряде современных монографий по эхографии. Мы остановимся лишь на некоторых свойствах ультразвука, без знания которых невозможно понять процесс получения ультразвуковой визуализации.

Скорость ультразвука и удельное волновое сопротивление тканей человека (по В.Н. Демидову)

Ультразвуковая волна, достигнув границы двух сред, может отразиться или пойти дальше. Коэффициент отражения ультразвука зависит от разности ультразвукового сопротивления на границе раздела сред: чем больше эта разность, тем сильнее степень отражения. Степень отражения зависит от угла падения луча на поверхность раздела сред: чем больше угол приближается к прямому, тем сильнее степень отражения.

Таким образом, зная это, можно найти оптимальную ультразвуковую частоту, которая дает максимальную разрешающую способность при достаточной проникающей способности.

Основные принципы, на которых основано действие ультразвуковой диагностической аппаратуры , — это распространение и отражение ультразвука .

Принцип работы диагностических ультразвуковых приборов заключается в отражении ультразвуковых колебаний от границ раздела тканей, обладающих определенной величиной акустического сопротивления. Считается, что отражение ультразвуковых волн на границе раздела происходит при разности акустических плотностей сред не менее 1%. Величина отражения звуковых волн зависит от разности акустической плотности на границе раздела сред, а степень отражения – от угла падения ультразвукового луча.

Получение ультразвуковых колебаний

В основе получения ультразвуковых колебаний лежит прямой и обратный пьезоэлектрический эффект, сущность которого заключается в том, что при создании электрических зарядов на поверхности граней кристалла последний начинает сжиматься и растягиваться. Преимуществом пьезоэлектрических преобразователей является способность источника ультразвука служить одновременно и его приемником.

Схема строения ультразвукового датчика

Датчик содержит пьезокристалл, на гранях которого закреплены электроды. Сзади кристалла находится прослойка вещества, поглощающая ультразвук, который распространяется в направлении, противоположном требуемому. Это повышает качество получаемого ультразвукового луча. Обычно ультразвуковой луч, генерируемый датчиком, имеет максимальную мощность по центру, а по краям она снижается, в результате чего разрешающая способность ультразвука различна по центру и по периферии. По центру луча всегда можно получить устойчивые отражения как от более, так и от менее плотных объектов, тогда как по периферии луча менее плотные объекты могут давать отражение, а более плотные отражаться как менее плотные.

Современные пьезоэлектрические материалы позволяют датчикам посылать и принимать ультразвук в широком диапазоне частот. Возможно проведение контроля над формой спектра акустического сигнала, создавая и сохраняя гауссову форму сигнала, которая в большей мере устойчива к искажениям полосы частот и смещению центральной частоты.

В последних конструкциях ультразвуковых приборов высокая разрешающая способность и четкость изображения обеспечиваются использованием системы динамического фокуса и широкополосного эхофильтра фокусировки входящих и выходящих ультразвуковых лучей посредством микрокомпьютера. Таким образом обеспечиваются идеальное профилирование и улучшение ультразвукового луча и характеристик боковой разрешающей способности изображения глубоких структур, получаемых при секторном сканировании. Параметры фокусировки устанавливаются в соответствии с частотой и типом датчика. Широкополосный эхофильтр обеспечивает оптимальную разрешающую способность за счет идеального сочетания частот с учетом поглощения эхосигналов, проходящих через мягкие ткани. Использование многоэлементных датчиков высокой плотности способствует устранению ложных эхосигналов, появляющихся вследствие боковой и задней дифракции.

Сегодня в мире происходит жесточайшая конкуренция фирм по созданию качественных визуальных систем, отвечающих самым высоким требованиям.

В частности, корпорация «Acuson» установила особый стандарт качества изображения и клинической разновидности, разработала Платформу 128 ХР TM — базовый модуль для постоянных усовершенствований, которая позволяет врачам расширять сферу клинических исследований в зависимости от потребностей.

В Платформе используются 128 электронно-независимых каналов, которые можно задействовать одновременно как на передаче, так и на приеме, обеспечивая исключительное пространственное разрешение, контрастирование тканей и однородность изображения во всем поле обзора.

Ультразвуковые диагностические приборы делятся на три класса: одномерные, двухмерные и трехмерные.

В одномерных сканерах информация об объекте представляется в одном измерении по глубине объекта, а изображение регистрируется в виде вертикальных пиков. По амплитуде и форме пиков судят о структурных свойствах ткани и глубине участков отражения эхосигналов. Этот тип приборов используется в эхо-энцефалографии для определения смещения срединных структур мозга и объемных (жидкостных и плотных) образований, в офтальмологии — для определения размера глаза, наличия опухолей и инородных тел, в эхопульсографии – для исследования пульсации сонных и позвоночных артерий на шее и их интракраниальных ветвей и т.д. Для этих целей используется частота 0.88-1.76 МГц.

Двухмерные сканеры

Двухмерные сканеры делятся на приборы ручного сканирования и работающие в реальном режиме времени.

В настоящее время для исследования поверхностных структур и внутренних органов используются лишь приборы, работающие в реальном масштабе времени, в которых информация непрерывно отражается на экране, что дает возможность вести динамическое наблюдение за состоянием органа, особенно при исследовании движущихся структур. Рабочая частота данных приборов от 0.5 до 10.0 МГц.

На практике чаще применяются датчики с частотой от 2.5 до 8 МГц.

Трехмерные сканеры

Для их применения требуются определенные условия:

— наличие образования, имеющего округлую или хорошо контурированную форму;

— наличие структурных образований, находящихся в жидкостных пространствах (плод в матке, глазное яблоко, камни в желчном пузыре, инородное тело, полип в заполненном жидкостью желудке или кишечнике, червеобразный отросток на фоне воспалительной жидкости, а также все органы брюшной полости на фоне асцитической жидкости);

— малоподвижные структурные образования (глазное яблоко, простата и др.).

Таким образом, с учетом этих требований трехмерные сканеры с успехом могут быть применены для исследования в акушерстве, при объемной патологии брюшной полости для более точной дифференциации от других структур, в урологии для исследования простаты с целью дифференциации структурной пенетрации капсулы, в офтальмологии, кардиологии, неврологии и ангиологии.

Из-за сложности использования, дороговизны аппаратуры, наличия многих условий и ограничений в настоящее время они применяются редко. Однако трехмерное сканирование это эхография будущего .

Доплерэхография

Принцип доплерэхографии заключается в том, что частота ультразвукового сигнала при отражении от движущегося объекта изменяется пропорционально его скорости и зависит от частоты ультразвука и угла между направлением распространения ультразвука и направлением потока. Этот метод с успехом применяется в кардиологии.

Метод представляет интерес и для внутренней медицины в связи с его возможностями давать достоверную информацию о состоянии кровеносных сосудов внутренних органов без введения контрастных веществ в организм.

Чаще используется в комплексном обследовании больных с подозрением на портальную гипертензию на ранних ее стадиях, при определении степени выраженности нарушений портального кровообращения, выяснении уровня и причины блокады в системе воротной вены, а также для изучения изменения портального кровотока у больных с циррозом печени при администрировании медикаментозных препаратов (бетаблокаторов, ингибиторов АПФ и др.).

Все приборы оснащены ультразвуковыми датчиками двух типов: электромеханическими и электронными. Оба типа датчиков, но чаще электронные, имеют модификации для использования в различных областях медицины при обследовании взрослых и детей.


В классическом варианте реального масштаба времени применяются 4 метода электронного сканирования: секторное, линейное, конвексное и трапециедальное, каждый из которых характеризуется специфическими особенностями в отношении поля наблюдения. Исследователь может выбрать метод сканирования в зависимости от стоящей перед ним задачи и места локации.

Секторное сканирование

Преимущества:

— большое поле зрения при исследовании глубоких участков.

Область применения:

— краниологические исследования новорожденных через большой родничок;

— кардиологические исследования;

— общие абдоминальные исследования органов малого таза (особенно в гинекологии и при исследовании простаты), органов ретроперитонеальной системы.

Линейное сканирование

Преимущества:

— большое поле зрения при исследовании неглубоких участков тела;

— высокая разрешающая способность при исследовании глубоких участков тела благодаря использованию многоэлементного датчика;

Область применения:

— поверхностные структуры;

— кардиология;

— исследование органов малого таза и паранефральной области;

— в акушерстве.

Конвексное сканирование

Преимущества:

— небольшая площадь контакта с поверхностью тела пациента;

— большое поле наблюдения при исследовании глубоких участков.

Область применения:

— общие абдоминальные исследования.

Трапециедальное сканирование

Преимущества:

— большое поле наблюдения при исследовании близко к поверхности тела и глубоко расположенных органов;

— легкая идентификация томографических срезов.

Область применения:

— общие абдоминальные исследования;

— акушерские и гинекологические.

Кроме общепринятых классических методов сканирования в конструкциях последних приборов применяются технологии, позволяющие качественно дополнить их.

Векторный формат сканирования

Преимущества:

— при ограниченном доступе и сканировании из межреберья обеспечивает акустические характеристики п р и минимальной апертуре датчика. Векторный формат визуализации дает более широкий обзор в ближнем и дальнем поле.

Область применения такая же, как при секторном сканировании.

Сканирование в режиме выбора зоны увеличения

Это особое сканирование выбранной оператором зоны интереса для повышения акустического информационного содержания изображения в двухмерном и цветном доплеровском режиме. Выбранная зона интереса отображается с полным использованием акустических и растровых линий. Повышение качества изображения выражается в оптимальной плотности линий и пикселей, повышенном разрешении, повышении частоты кадров и увеличении изображения.

При обычном участке остается прежняя акустическая информация, а при обычном формате выбора зоны увеличения RES достигается увеличение изображения с повышенным разрешением и большой диагностической информацией.

Визуализация Мульти-Герц

Широкополосные пьезоэлектрические материалы обеспечивают современным датчикам возможность работать в широком диапазоне частот; представляют возможность выбора конкретной частоты из широкой полосы частот, имеющихся в датчиках, сохраняя при этом однородность изображения. Эта технология позволяет менять частоту датчика одним лишь нажатием кнопки, не тратя время на замену датчика. А это означает, что один датчик эквивалентен двум или трем частным характеристикам, что повышает ценность и клиническую разносторонность датчиков («Acuson», «Simens»).

Нужная ультразвуковая информация в последних инструкциях приборов может быть заморожена в разных режимах: B-mode, 2B-mode, 3D, В+В mode, 4B-mode, M-mode и регистрироваться при помощи принтера на специальной бумаге, на компьютерной кассете или видеоленте с компьютерной обработкой информации.

Ультразвуковая визуализация органов и систем человеческого организма непрерывно совершенствуется, постоянно открываются новые горизонты и возможности, однако правильная интерпретация полученной информации всегда будет зависеть от уровня клинической подготовки врача-исследователя.

В связи с этим я часто вспоминаю разговор с представителем фирмы «Aloca», приежавшим к нам сдать в эксплуатацию первый прибор в реальном масштабе времени «Aloca» SSD 202 D (1982 г.). На мое восхищение тем, что в Японии разработана технология ультразвукового прибора с компьютерной обработкой изображения он ответил так: «Компьютер — это хорошо, но если другой компьютер (показывая на голову) плохо работает, то тот компьютер ничего не стоит».

Ультразвук - упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.

Источники Ультразвука

Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Наиболее распространены керамические преобразователи из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвукового пучка, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.Примеры излучателей:свисток Гальтона,жидкостный и ультразвуковой свисток,сирена.

Распространение ультразвука.

Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной

скоростью.

Дифракция, интерференция

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

Поглощение ультразвуковых волн

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань - 6,8 см; мышечная - 3,6 см; жировая и мышечная ткани вместе - 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот - это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Глубина проникновения ультразвуковых волн

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Преломление ультразвуковых волн

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис - дерма - фасция - мышца) будет наблюдаться преломление ультразвуковых волн.

Отражение ультразвуковых волн

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1-0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость - окружающие её ткани и ткани - воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца - надкостница - кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Ультразвук - упругая механическая продольная волна, частота которой превышает 20000Гц . В медицине применяется УЗ частотой 1-1,5МГц.

Ультразвуковая волна вследствие высокой её частоты распространяется в виде лучей (из-за малой длины УЗ-волны можно пренебречь её волновыми свойствами). Такие лучи можно сфокусировать с помощью специальных акустических линз и достигнуть, таким образом, большой интенсивности УЗ-волны. Кроме того, поскольку интенсивность волны пропорциональна квадрату частоты и амплитуды колебаний, то высокая частота УЗ-волны даже при малых её амплитудах предопределяет возможность получения УЗ-волн большой интенсивности.

Способы получения ультразвука :

1. магнитострикционный (получают ультразвук до 200кГц). Магнитострикция - это изменение формы и объёма ферромагнетика (железо, его сплавы с никелем) при помещении его в переменное магнитное поле. Переменное магнитное поле - это поле, вектор магнитной индукции которого изменяется во времени по гармоническому закону, т.е. изменение указанного параметра характеризуется определённой частотой. Это поле действует как вынуждающая сила, заставляющая стержень из железа сжиматься и растягиваться в зависимости от изменения величины магнитной индукции во времени. Частота сжатий и растяжений будет определяться частотой переменного магнитного поля. При этом в воздухе у концов стержня возникают деформации сжатия, которые распространяются в виде УЗ - волн.

Увеличения амплитуды УЗ-волн добиваются путём подбора такой частоты переменного магнитного поля, при которой наблюдается резонанс между собственными и вынужденными колебаниями стержня.

2. обратный пьезоэлектрический эффект (получают ультразвук более 200кГц). Пьезоэлектрики - вещества кристаллического строения, имеющие пьезоэлектрическую ось, то есть направление, в котором они легко деформируются (кварц, сегнетова соль, титанат бария и др.) Когда такие вещества помещают в переменное электрическое поле (по гармоническому закону колеблется напряжённость электрического поля), пьезоэлектрики начинают сжиматься и растягиваться вдоль пьезоэлектрической оси с частотой переменного электрического поля. При этом вокруг кристалла возникают механические возмущения - деформации сжатия и разряжения, которые распространяются в виде УЗ-волн. В достижении нужной амплитуды играют роль резонансные явления.

Эффект назван обратным, поскольку исторически раньше был открыт прямой пьезоэлектрический эффект - явление возникновения переменного электрического поля при деформации пьезоэлектриков.

Наличие прямого и обратного пьезоэлектрического эффекта очень важно для работы УЗ- диагностических приборов. Для того чтобы направить УЗ-волну на тело пациента, необходимо получить её, что делают с помощью обратного пьезоэлектрического эффекта. Для того чтобы зарегистрировать и визуализировать отражённую УЗ-волну, необходимо её превратить в электрическое поле, чего достигают с помощью прямого пьезоэлектрического эффекта.

Особенности распространения УЗ-волн

1) В однородной среде. При прохождении УЗ-волны интенсивностью I через слой вещества шириной её интенсивность уменьшается и становится равной I = I 0 ·e -αd , где I 0 - начальная интенсивность УЗ-волны; I - интенсивность волны после прохождения через слой вещества, d - ширина слоя вещества, - α коэффициент угасания волны.

Угасание УЗ-волны вызвано двумя процессами: рассеянием энергии в тканях (связано с клеточной неоднородностью органов) и её поглощением (связано с макромолекулярной структурой тканей). Значение коэффициента угасания - важный диагностический признак. Так, печень имеет малый коэффициент угасания УЗ-волн вследствие малого коэффициента рассеяния. При циррозе эта величина резко возрастает.

Поглощение тканями УЗ-волн - основа диагностики состояния внутренних органов по принципу трансмиссии - анализа интенсивности волны, прошедшей через тело пациента, и применения УЗ в терапии и хирургии.

2) На границе двух сред. При попадании УЗ-волны интенсивностью на границу раздела сред происходит отражение волны и поглощение волны.

Часть энергии, которая будет заключена в отражённой волне, зависит от соотношения акустических сопротивлений сред. Так на границе тело пациента- воздух отражается почти 100% энергии. Поэтому, чтобы УЗ-волна попала в тело пациента применяют специальные гели (цель - уменьшить перепад акустического сопротивления сред).

Отражение УЗ волны от неоднородностей и границ внутренних органов - основа диагностики их состояния по принципу эхолокации - анализа интенсивности отражённой УЗ - волны. УЗ - волна, направленная на тело пациента, называется зондирующим сигналом , а отражённая УЗ-волна - эхосигналом.

Отражение УЗ-волн также зависит от размера отражающих структур:

Если размер отражающих структур сопоставим с длинной УЗ-волны, то будет происходить дифракция волн, т.е. огибание волной структуры с последующим рассеянием энергии в тканях и формированием УЗ-тени. Это ограничивает разрешающую способность УЗ-диагностики;

Если размер отражающих структур больше длины УЗ-волны, то последняя будет отражаться, причём интенсивность эхосигнала будет зависеть от направления зондирующего сигнала, формы и размера отражающих структур. Существуют так называемые зеркальные структуры , амплитуда эхосигналов от которых имеет самые большие значения (кровеносные сосуды, полости, границы органов и тканей).

В целом, однако, интенсивность эхосигналов очень невелика, что требует для их регистрации очень чувствительной аппаратуры, но, с другой стороны, определяет проникновение УЗ-волн в более глубоколежащие внутренние структуры и способствует их визуализации.

Применение ультразвука в диагностике

С диагностической целью применяют УЗ-волны малой интенсивности, которые не вызывают биологических эффектов в тканях, - до 0,1 Вт на кв.см.

С помощью УЗ-датчика на основе обратного пьезоэлектрического эффекта получают УЗ зондирующий сигнал и принимают эхосигнал. Последний в датчике в результате прямого пьезоэлектрического эффекта преобразуется в переменное электрическое поле, что позволяет зарегистрировать, усилить и визуализировать эхосигналы с помощью электронной аппаратуры.

По способу регистрации и отражения на экране электронных приборов эхосигналов различают следующие режимы УЗ-сканирования:

- А-режим (amplitude mode). Эхосигналы, преобразованные в датчике в электрическое поле, вызывают вертикальное отклонение луча развёртки в форме пиков, амплитуда которых будет зависеть от интенсивности отражённой УЗ-волны, а местоположение на экране осциллографа - глубину залегания отражающей структуры в масштабе измерительного устройства. Примером использования А-режима в медицине является эхоэнцефалоскопия - методика УЗ-сканирования, используемая в неврологии и нейрохирургии для диагностики объёмных поражений головного мозга (гематом, опухолевых процессов и т.д.). Основные эхосигналы (максимальные по амплитуде) формируются при отражении от черепной коробки в месте расположения датчика, срединных структур, черепной коробки противоположной стороны. Смещение центрального пика в правую или левую сторону может указывать на наличие патологии соответственно левого или правого полушарий мозга.

- В-режим (brightness mode). Эхосигналы, преобразованные в датчике в электрическое поле, вызывают на экране свечение точек разной яркости: чем большее колебание напряжённости электрического поля (что, в свою очередь, зависит от интенсивности эхосигнала), тем более яркое и объёмное пятно образуется на экране измерительного прибора. Для реализации режима используют сложноустроенные датчики УЗ-волн, которые содержат множество элементов, излучающих зондирующие стимулы и преобразующих эхосигналы. Направление зондирующих сигналов также меняется. Электронная аппаратура накапливает данные исследования одного и того же участка тела, полученных с помощью всех элементов датчика и в разных направлениях, и, интегрируя их, формирует изображение исследуемого органа в реальном режиме времени в масштабе измерительного устройства. Таким образом можно получить двумерные эхотомограммы.

- М-режим (motion mode). Позволяет получать эхограммы подвижных структур организма. Как и при осуществлении А-режима, направление зондирующих сигналов остаётся неизменным на протяжении всего времени исследования, однако зондирование осуществляется многократно так, чтобы период формирования М- эхограммы превышал период движения исследуемых структур и период формирования А- эхограммы. Регистрируется изменение глубины залегания подвижной структуры во времени (перемещение луча измерительного устройства вдоль оси х ). Амплитуда эхосигналов отображается в виде пятен различной яркости (как в режиме В). При каждом последующем зондировании продольная эхограмма смещается на малую величину в направлении, перпендикулярном оси изображения глубины (времени). Чаще всего в клинике используется эхокардиография.

Взаимодействие ультразвука с веществом. Применение ультразвука в терапии и хирургии.

УЗ характеризуется следующими видами действия на вещество:

- механическое действие . Оно связано с деформацией микроструктуры вещества вследствие периодического сближения и отдаления составляющих вещество микрочастиц. Например, в жидкости УЗ-волна вызывает разрывы её целостности с образованием полостей - кавитаций. Это энергетически невыгодное состояние жидкостей, поэтому полости быстро закрываются с выделением большого количества энергии.

- тепловое действие . Связано с тем, что энергия, заключённая в УЗ-волне и выделяющаяся при закрытии кавитаций, частично рассеивается в тканях в виде тепла, что приводит к их нагреванию.

- физико-химическое действие . Проявляется в ионизации и диссоциации молекул веществ, ускорении химических реакций (например, окисления и восстановления) и т.д.

На комплексном действии механических, тепловых и физико-химических факторов основано биологическое действие УЗ . Это действие будет определяться интенсивностью УЗ-волны.

УЗ малой и средней интенсивности (соответственно 1,5 Вт на кв . см . и 3 Вт на кв.см ) вызывают в живых организмах позитивные эффекты, стимулирует протекание нормальных физиологических процессов. Это основа использования УЗ в физиотерапии. УЗ улучшает проницаемость клеточных мембран, активизирует все виды транспорта через мембрану, влияет на скорость протекания биохимических реакций.

Увеличение интенсивности УЗ-волны приводит к разрушающему его действию на клетки. Это используется для стерилизации медицинских помещений путём уничтожения ультразвуком вирусов и клеток бактерий и грибков.

УЗ высокой интенсивности широко используется в хирургии. Некоторые операции проводятся с помощью ультразвукового скальпеля. Они безболезненны, сопровождаются малыми кровотечениями, раны быстрее заживают, в том числе вследствие стерилизации раны УЗ.

Широкое использование имеет УЗ в ортопедии: для проведения некоторых операций на кости применяется УЗ-пилка , УЗ применяется для соединения костей между собой и скрепления с ними костных имплантантов.

Литотрипсия - методика разрушения камней в почках и жёлчном пузыре с помощью направленного действия УЗ волн большой интенсивности.

Эходоплерография

Эффект Доплера - изменение частоты волн, которые воспринимаются приёмником вследствие относительного движения источника волн и приёмника. Для вычисления частоты волн, которые воспринимаются приемником, пользуются формулой:

Где v приемн - частота волн, воспринимаемых приемником, v ист - частота волн, испускаемых источником, v 0 - скорость волны, u 0 - скорость движения приемника волн, u ист - скорость движения источника волн.

Верхние знаки в числителе и знаменателе характеризуют случаи приближения друг к другу источника и приёмника УЗ-волн, а нижние знаки - случаи отдаления источника и приёмника УЗ-волн.

Эходоплерография - методика исследования скорости кровотока и движения подвижных структур организма (сердце и сосуды), основанная на применении эффекта Доплера.

В мягкие ткани с помощью неподвижного датчика излучается УЗ-волна определённой частоты ν , после чего регистрируют эхосигналы, отражённые от подвижных элементов (главным образом, от эритроцитов крови) и имеющие вследствие эффекта Доплера частоту ν``.

Доплеровский эффект наблюдается дважды:

Сначала датчик является источником волн частотой ν, а эритроцит - приёмником. Вследствие движения эритроцит воспримет волну частотой ν`.

Эритроцит отразит попавшую на него УЗ-волну частотой ν`, но датчик, к которому вернётся эхосигнал, вследствие подвижности эритроцита воспримет его частотой ν``.

Диагностическим признаком является разность Δν = ν - ν`` , которая называется доплеровским сдвигом частоты . Эта разность зависит от скорости движения эритроцитов, т.е. и скорости кровотока в целом.

Доплеровский сдвиг частот находиться в звуковом диапазоне и может быть услышан опытным врачом с помощью специальных приспособлений. Существуют и более современные методы визуализации доплеровского сдвига частот.



Copyright © 2024 Женские секреты.