Интересные факты о глазах человека. Сколько цветов видит человеческий глаз? Сколько цветов может различать человеческий глаз

Окружающий нас мир пестрит множеством красок, которые меняются с приходом нового времени года – бледные морозы с блёклым солнцем сменяются яркой зеленью весны, а на смену невообразимому многообразию различных летних цветов приходят все осенние оттенки жёлтого.

Мир вокруг нас прекрасен в этом ярком сменяющемся великолепии. Но что позволяет видеть зелёную листву, яркие цветы, пожелтевшие колосья и белоснежные снега?

Как глаз распознает цвета?

Оказывается, что сетчатка, являющаяся очень важной частью человеческого глазного яблока, сама состоит из палочек и колбочек. Как раз колбочки отвечают за восприятие различных цветов. В основе любого оттенка лежит три основных цвета – это красный, зелёный и синий.

Все остальные варианты – это лишь производные, которые образовались при смешении разного количества основных цветов. Интенсивность цвета зависит от длины волны, которая служит для его передачи.

Сетчатка глаза содержит 3 типа колбочек. Каждый из типов соответственно воспринимает длину волны от 400 до 700 нанометров и отвечает за восприятие какого-то одного из трёх основных цветов. Если по каким-то причинам функционирование колбочек нарушено, то восприятие человеком окружающего мира значительно изменится.

Цветоощущение

Говоря о цветовом зрении, невозможно не упомянуть такой термин как цветоощущение. Широко известно, что цветовые раздражители могут иметь различную яркость. Способность глаза воспринимать эту яркость и есть цветоощущение. Кроме того, к цветоощущению можно отнести искажения в восприятии цвета, вызванные дополнительными факторами, например, фоном.

Фон может непосредственно воздействовать на органы зрения, искажая оттенки изображения. Проверить это очень просто. Достаточно взять две фигуры одинакового цвета и поместить их на различные фоны. На чёрном фоне яркие оттенки будут иметь выразительные края, а по центру будут выглядеть более тускло. Жёлтый и синий фоны придают изображению разные оттенки восприятия.

Кроме того, различные цветоощущения будут проявлять себя в контрастных ситуациях. Так, например, если долгое время смотреть на зелёный цвет, а затем перевести взгляд на чистый лист бумаги, то покажется, что он имеет красноватый оттенок. Явление, при котором цвет оказывает подобное влияние на цветоощущение, называется цветовая утомляемость.

Нарушения цветового зрения

В зависимости от того, какой именно цвет не воспринимает человеческий глаз, существуют три различных изменения восприятия.

  1. Протаномалия. В этом случае нарушена работоспособность колбочек, отвечающих за восприятие красного цвета;
  2. Дейтераномалия. Это патологические изменения в восприятии зелёного цвета;
  3. И, наконец, тританомалия – неверное восприятие синего цвета.

Каждый из этих случаев может быть в трёх стадиях развития:

  1. Изменения в восприятии несущественны и немного искажают общую картину мира;
  2. Изменения достигают срединного этапа развития и сильно искажают получаемое глазом изображение;
  3. Сильные изменения цветовосприятия могут стать причиной полной его утраты.

Соответственно, заболевание, при котором человек нормально воспринимает только 2 основных цвета, называется дихромазией.

Иногда встречаются более сложные случаи, когда нарушена работа двух типов колбочек на сетчатке глаза. В этом случае человек может нормально воспринимать только одну цветовую гамму. Соответственное заболевание называется монохромазией.

Крайне редко можно наблюдать ахромазию – это полная потеря цветового восприятия. В этой ситуации человек видит мир в чёрно-белом цвете.

Стоит отметить, что для нормального цветовосприятия также существует своё название – это трихромазия.

Причины нарушений цветового зрения

Восприятие цвета может быть нарушено по нескольким причинам.

Во-первых, это наследственные нарушения. Встречается такое явление чаще всего у мужчин. Выражается пониженным цветоощущением, особенно в отношении к красному и зелёному цветам.

Это является ответом на вопрос, почему очень часто можно наблюдать ситуацию, при которой представительницы женского пола способны выделить намного больше оттенков в цветовой гамме, чем мужчины.

Многие люди привыкли называть дальтониками тех, кто не воспринимает оттенки красного. Под таким определением есть довольно прочные корни. Дело в том, что английский учёный Дальтон имел протаномалию – не воспринимал оттенки красного.

Он же впервые и описал это явление. Сегодня дальтоники – это те люди, которые имеют врождённый дефект цветового зрения. Они живут так же, как и остальные люди, и очень часто могут назвать цвета, которые не различают. Со временем к ним приходит умение распознавать различные степени яркости разных цветов.

Вторая причина возникновения нарушений в цветовосприятии – это приобретённое заболевание, ставшее следствием перенесённой болезни. Причинами такого нарушения могут стать заболевания сетчатки глаза, повреждения зрительного нерва, а также различные заболевания центральной нервной системы. Как правило, в этом случае присутствуют дополнительные симптомы, такие как резкое снижение остроты зрения, неприятные ощущения в области глаз и т.д.

Главное отличие приобретённого нарушения от врождённого в том, что его можно вылечить путём устранения основного заболевания. Лечение самого нарушения невозможно на данном этапе развития офтальмологии.

Исследование цветового зрения

В большинстве случаев таких исследований никто не проводит, однако есть частные ситуации, когда человека проверяют на наличие или отсутствие соответствующих нарушений.

В первую очередь, это, конечно, военные отдельных войск, для которых данный фактор важен.

Кроме них, могут проверяться люди, связанные с определёнными отраслями промышленности, а также все, кто проходит медицинский осмотр на получение водительских прав.

Проверка проводится с помощью специального тестирования в несколько этапов.

Первый этап – это демонстрация изображений, на которых цифры или геометрические фигуры изображены с помощью кругов разного цвета и размера.

Если у человека наблюдаются нарушения цветового зрения, то он просто не сможет увидеть различную яркость этих элементов, а, следовательно, и сами элементы.

Второй этап – это проверка с помощью аномалоскопа. Принцип действия прибора заключается в том, что человеку даётся два тестовых поля. На одном из них есть фон жёлтого цвета, а на другом испытуемый должен подобрать точно такой же фон с помощью красного и зелёного.

Этот прибор помогает не только распознать аномалии в цветовосприятии, но и определить степень развития этих аномалий.

Нормальное восприятие цвета – это явление, которое не изучено до конца. Оно до сих пор вызывает интерес множества учёных, тем более что на данный момент не существует способов вылечить аномалии при развитии соответствующих заболеваний.

Изменение в восприятии различных оттенков может служить признаком возникновения серьёзных заболеваний органов зрения, поэтому если вы наблюдаете у себя такой синдром, то не медлите с обращением к врачу-офтальмологу, ведь скорейшее излечение причины заболевания поможет вам вернуть нормальное восприятие окружающего мира.

Обычного человека различает около 150 основных цветов , профессионала - до 10-15 тысяч цветов , при определенных условиях глаз человека отличает действительно несколько миллионов цветовых валентностей, так составляют таблицы для американских астронавтов. Цифры могут меняться с учетом тренировки, состояния человека, условий освещенности и других факторов.
Если верить источнику - «Биология в вопросах и ответах» - Цветовое пространство» нормального человека содержит примерно 7 млн. различных валентностей, включая небольшую категорию ахроматических и весьма обширный класс хроматических. Хроматические валентности поверхностной окраски объекта характеризуются тремя феноменологическими качествами: тоном, насыщенностью и светлотой. В случае светящихся цветовых стимулов «светлота» заменяется «яркостью». В идеале цветовые тона - это «чистые» цвета. Тон может быть смешан с ахроматической валентностью, что дает различные оттенки цвета. Насыщенность оттенка - это мера относительного содержания в нем хроматических и ахроматических компонентов, а светлота определяется положением ахроматического компонента на шкале серого.

Исследования показали, что на видимом участке спектра глаз человека способен различать при благоприятных условиях около 100 оттенков по цветовому фону. По всему спектру, дополненному чистыми пурпурными цветами, в условиях достаточной для цветоразличения яркости, число различаемых оттенков по цветовому тону достигает 150.

Эмпирически установлено, что глаз воспринимает не только семь основных цветов, но и огромное множество промежуточных оттенков цвета и цветов, полученных от смешения света разных длин волн. Всего насчитывается до 15000 цветовых тонов и оттенков.

Наблюдатель с нормальным цветовым зрением при сопоставлении различно окрашенных предметов или разных источников света может различать большое количество цветов. Натренированный наблюдатель различает по цветовым тонам около 150 цветов, по насыщенности около 25, по светлоте от 64 при высокой освещенности до 20 при пониженной.

По-видимому, разночтение справочных данных связано с тем, что восприятие цвета может частично меняться в зависимости от психофизиологического состояния наблюдателя, степени его тренированности, условий освещения и т. п.

Информация

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 до 740 нм. Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом , или просто светом . Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой.

Глаз - сенсорный орган человека и животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. У человека через глаз поступает около 90 % информации из окружающего мира. Даже простейшие беспозвоночные животные обладают способностью к фототропизму благодаря своему, пусть крайне несовершенному, зрению.

Орган человеческого зрения это не растровая камера. Глаза это уникальный сложнейший механизм , которые все время воспринимают любую внешнюю информацию и переводящий ее в идеальное панорамную «объектную» картинку. Поэтому медики отвечают, что количество мегапикселей в глазу человека равняется нулю. Система зрительного восприятия работает по совершенно иным принципам, нежели цифровая и сенсорная техника. Густота и концентрация палочек и колбочек настолько впечатляющая, что матрицам современных камер ее точно не достичь. Глаза воспринимают аналоговые изображения, а не оцифровывают его, поэтому сравнение нашего зрительного восприятия с ПЗС матрицей, это не более чем интересное развлечение, не имеющее под собой научного основания.

Сколько ресниц у человека на одном глазу?

Ресницы (Cilia)это щетинистые волоски, которые обрамляют глаз снизу и сверху. Они выполняют не только роль эстетического украшения внешности, а и служат защитным барьером от всевозможных загрязнений, попаданий пыли, пота и мелких инородных предметов.

  1. Ресницы растут на протяжении всей жизни человека. У молодых людей они растут и обновляются интенсивней, а людей старшего возраста растут медленней, становятся реже и тоньше.
  2. Средний период обновления волосков у человека составляет 8-9 недель.
  3. Защитные волоски на краях век начинают образовываться еще в утробе матери, примерно на седьмой неделе внутриутробного развития.
  4. За всю жизнь общая длина ресничек, выросших и выпавших у человека, достигает 30 метров.
  5. Количество ресниц это не постоянная величина, в среднем она варьируется от 250 до 400 штук на одном глазу. Причем на верхнем веке их в два раза больше чем на нижнем.
  6. На 97% щетинистые волоски состоят из кератина, и лишь на 3% из воды.

Клещи на ресницах глаз у человека - опасно ли это?

Демодекс или как говорят в народе глазной клещ, это весьма распространенная проблема. Опасные гости имеют микроскопический размер (всего 0,1-0,2 мм), поэтому они могут беспрепятственно располагаться на сальных железах глазных век. Сама по себе угревая железница (клещ) существо безобидное, но вот продукты распада ее жизнедеятельности очень опасны для человека, так как они могут попадать в кровь и инфицировать весь организм.

Основные симптомы заражения

  1. Появление зуда, припухлости и покраснения век.
  2. Образование корочек на ресничных корнях.
  3. Повышенное выпадение ресниц и усиленное шелушение.
  4. Ухудшение зрения, появление светобоязни развитие аллергических реакций.

Как только вы заметили у себя вышеперечисленные признаки, обратитесь к офтальмологу для установления диагноза и определения схемы последующего лечения.

Сколько оттенков различает глаз человека?

И напоследок немного интересной информации об удивительных возможностях нашего зрения. В цветовом пространстве, доступному обычному человеку около семи миллионов цветов и оттенков, различной валентности. Глаз воспринимает и различает не только семь базовых цветов, но и огромное количество промежуточных тонов, полутонов и оттенков, разной насыщенности и разной световой длины. В среднем с помощью органов зрения мы можем различать около 10 миллионов тонов и около 500 оттенков каждого базового цвета.

Обычного человека около 150 основных , профессионала – до 10-15 тысяч , при определенных условиях глаз человека отличает действительно несколько миллионов цветовых валентностей, так составляют таблицы для американских астронавтов. Цифры могут меняться с учетом тренировки, состояния человека, условий освещенности и других факторов.
Если верить источнику – «Биология в вопросах и ответах» – Цветовое пространство» нормального человека содержит примерно 7 млн. различных валентностей, включая небольшую категорию ахроматических и весьма обширный класс хроматических. Хроматические валентности поверхностной окраски объекта характеризуются тремя феноменологическими качествами: тоном, насыщенностью и светлотой. В случае светящихся цветовых стимулов «светлота» заменяется «яркостью». В идеале цветовые тона – это «чистые» цвета. Тон может быть смешан с ахроматической валентностью, что дает различные оттенки цвета. Насыщенность оттенка – это мера относительного содержания в нем хроматических и ахроматических компонентов, а светлота определяется положением ахроматического компонента на шкале серого.

Исследования показали, что на видимом участке спектра глаз человека способен различать при благоприятных условиях около 100 оттенков по цветовому фону. По всему спектру, дополненному чистыми пурпурными цветами, в условиях достаточной для цветоразличения яркости, число различаемых оттенков по цветовому тону достигает 150.

Эмпирически установлено, что глаз воспринимает не только семь основных цветов, но и огромное множество промежуточных оттенков цвета и цветов, полученных от смешения света разных длин волн. Всего насчитывается до 15000 цветовых тонов и оттенков.

Наблюдатель с нормальным цветовым зрением при сопоставлении различно окрашенных предметов или разных источников света может различать большое количество цветов. Натренированный наблюдатель различает по цветовым тонам около 150 цветов, по насыщенности около 25, по светлоте от 64 при высокой освещенности до 20 при пониженной.

По-видимому, разночтение справочных данных связано с тем, что восприятие цвета может частично меняться в зависимости от психофизиологического состояния наблюдателя, степени его тренированности, условий освещения и т. п.

Информация

Видимое излучение – электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 до 740 нм. Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом , или просто светом . Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой.

Глаз – сенсорный орган человека и животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. У человека через глаз поступает около 90 % информации из окружающего мира. Даже простейшие беспозвоночные животные обладают способностью к фототропизму благодаря своему, пусть крайне несовершенному, зрению.

August 17th, 2015 , 09:25 am

Предлагаем вам узнать об удивительных свойствах нашего зрения - от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам - световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", - говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета - пожалуй, самой первой способности, которая приходит на ум применительно к зрению.


Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток - палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении - например, ночью (ночное зрение).

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа - за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", - говорит Лэнди.


Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем - спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией - отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) - способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек - они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.


Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, - это определенное количество света, излученного или отраженного на него объектом, - говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".


В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.


Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора - в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.


Ограничения остроты зрения зависят от нескольких факторов - таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. "По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз", - говорит Лэнди.

На этом принципе основаны таблицы , используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.


Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.



Copyright © 2024 Женские секреты.